यदि ${ }^{ n } C _{4},{ }^{ n } C _{5}$ तथा ${ }^{ n } C _{6}$ समान्तर श्रेणी में हो, तो $n$ का मान हो सकता है
$9$
$14$
$11$
$12$
यदि $\log 2,\;\log ({2^n} - 1)$ तथा $\log ({2^n} + 3)$ समान्तर श्रेणी में हों, तो $n =$
यदि एक वास्तविक संख्या $x$ के लिए $1$ , $\log _{10}(4 x-2)$ तथा $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ एक समान्तर श्रेढ़ी में है, तो सारणिक $\left|\begin{array}{ccc}2\left( x -\frac{1}{2}\right) & x -1 & x ^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ का मान बराबर है......।
धनपूर्णांक के $5-$ टुपल्स $(tuples)$ $(a, b, c, d, e)$, इस प्रकार हैं कि
$I$. $a, b, c, d, e$ उत्तल पंचकोण $(Convex\,pentagon)$ के डिग्री में कोणों के माप हैं ।
$II$. $a \leq b \leq c \leq d \leq e$
$III$. $a, b, c, d, e$ अंकगणितीय श्रेढ़ी मे हैं ।
ऐसे कितने $5-$ टुपल्स सभव है ?
यदि ${a^2},\;{b^2},\;{c^2}$ समान्तर श्रेणी में हों, तो ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ व ${(a + b)^{ - 1}}$ होंगे
श्रेणियों $ S_1=3+7+11+15+19+\ldots \ldots $ $ S_2=1+6+11+16+21+\ldots $ का $8$ वाँ उभयनिष्ठ पद है।